

ECEN 3723 Systems I
 Spring 2003
 Computer Project

Objective: Using MATLAB tool to help you analyze the transient response of a system.
Requirement: Show all your steps, plots (responses) and clearly state your comments and explanations if required. Include all the MATLAB programs (documented), which is used to show your work.

Problem:

Given that the equation of motion for the system is as below:

$$
\ddot{y}(t)+52 \ddot{y(t)}+104 \dot{y(t)}+200 y(t)=50 x(t)
$$

1. Compute the transfer function (full model) of the equation of motion, where $x(t)$ is the input of the system. Assume all initial condition is zero.
2. Plot the step response of the transfer function from Part 1 , where $x(t)$ is a step input to the system.
(a) From the response clearly indicate the following specifications.

- Percentage Maximum overshoot - The maximum overshoot is the maximum peak value of the response curve measured from the final steady state value of the response. It is defined by

$$
\% \text { Max. Overshoot }=\frac{y(t=\text { peak value })-y(\infty)}{y(\infty)} \times 100 \%
$$

- Rise Time, $\mathbf{t}_{\mathbf{r}}$ - Time required for the response to rise from 10% to 90% (usually apply to second order overdamped systems) or $0 \%-100 \%$ (usually apply to second order underdamped systems).
- Peak Time, $\mathbf{t}_{\mathbf{p}}$ - Time required for the response to reach the first peak of the overshoot.
- Settling time, $\mathbf{t}_{\mathbf{s}}$ - Time required for the response curve to reach and stay within 2% of the final value. For second order system, t_{s} is about $4 \sim 5 \mathrm{~T}$.
- Steady-State value - The value that the response curve reaches the final value. Compute the $y(\infty)$ using the Final Value Theorem. Do the computed value match the steady state value from the response?

3. From Part 1, rewrite the transfer function with the dominator polynomial has been factored. (Hint: You can use "roots" and "poly" commands to help you)
(a) Compute the time constants, τ. Can the transfer function (full model) on Part 1 be reduced to a reduced model, which the question is "Are the time constants far apart" ? If so, what is the reduced model (Reduced transfer function)? (Hint: For second order system, the time constant, $\tau=\frac{1}{\zeta \omega_{n}}$)
(b) Plot the step responses for the full model (transfer function in part 1) and the reduced model (Reduced transfer function in Part 3(a)) on the same figure. Do you agree that the reduced model is reasonable to approximate the full model? Explain.
4. (a) Get the discrete transfer function at the following sampling periods:

$$
T=0.01 ; T=0.25 ; T=1 .
$$

(b) Get the impulse responses of the discrete transfer functions from Part 4(a).
(c) Plot the poles and zeros of the discrete transfer functions from Part 4(a).
5. Use the "residue" command to solve the transfer function from Part 1 , where $\mathrm{u}(\mathrm{t})$ is an unit step input. (Hint: Solve for $y(t)$).

